
info@juzhikan.asia
广州大学生命科学学院精准基因编辑工程中心,广东广州,510006;
摘要:碱基编辑技术作为基因组编辑领域的重要进展,不依赖于双链断裂(DSB),从而减少了基因组损伤和脱靶效应。碱基编辑器(Base Editor, BE)是一种能在特定的DNA位点实现单碱基的精确替换的技术。自2016年CBE(Cytosine Base Editor)和ABE(Adenine Base Editor)被提出以来,碱基编辑器已成为基因编辑研究的热点。CGBE(Cytosine-Guanine Base Editor)是基于CBE的进一步发展,它能够同时编辑胞嘧啶(C)和鸟嘌呤(G),拓展了碱基编辑器的应用范围。本综述将概述碱基编辑器CGBE的基本研究进展。
关键词:碱基编辑;碱基颠换编辑器;CGBE;脱氨酶
参考文献
[1]Zhao D, Li J, Li S, et al. Glycosylase base editors enable C-to-A and C-to-G base changes[J]. Nature biotechnology, 2021, 39(1): 35-40.
[2]Molla K A, Qi Y, Karmakar S, et al. Base editing landscape extends to perform transversion mutation[J]. Trends in Genetics, 2020, 36(12): 899-901.
[3]Chen L, Hong M, Luan C, et al. Adenine transversion editors enable precise, efficient A• T-to-C• G base editing in mammalian cells and embryos[J]. Nature biotechnology, 2024, 42(4): 638-650.
[4] Salter J D, Bennett R P, Smith H C. The APOBEC protein family: united by structure, divergent in function[J]. Trends in biochemical sciences, 2016, 41(7): 578-594.
[5] Boström K, Garcia Z, Poksay K S, et al. Apolipoprotein B mRNA editing. Direct determination of the edited base and occurrence in non-apolipoprotein B-producing cell lines[J]. Journal of Biological Chemistry, 1990, 265(36): 22446-22452.
[6]Grünewald J, Zhou R, Garcia S P, et al. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors[J]. Nature, 2019, 569(7756): 433-437.
[7]Zuo E, Sun Y, Wei W, et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos[J]. Science, 2019, 364(6437): 289-292.
[8]Kurt I C, Zhou R, Iyer S, et al. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells[J]. Nature biotechnology, 2021, 39(1): 41-46.
[9]Park S H, Beal P A. Off-target editing by CRISPR-guided DNA base editors[J]. Biochemistry, 2019, 58(36): 3727-3734.
[10] Ye L, Zhao D, Li J, et al. Glycosylase-based base editors for efficient T-to-G and C-to-G editing in mammalian cells[J]. Nature biotechnology, 2024, 42(10): 1538-1547.
[11]Oakes B L, Fellmann C, Rishi H, et al. CRISPR-Cas9 circular permutants as programmable scaffolds for genome modification[J]. Cell, 2019, 176(1): 254-267. e16.
[12] Mohni K N, Wessel S R, Zhao R, et al. HMCES maintains genome integrity by shielding abasic sites in single-strand DNA[J]. Cell, 2019, 176(1): 144-153. e13.
[13]Tong H, Wang X, Liu Y, et al. Programmable A-to-Y base editing by fusing an adenine base editor with an N-methylpurine DNA glycosylase[J]. Nature biotechnology, 2023, 41(8): 1080-1084.
[14] Kurt I C, Zhou R, Iyer S, et al. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells[J]. Nature biotechnology, 2021, 39(1): 41-46.
[15] Chen L, Park J E, Paa P, et al. Programmable C: G to G: C genome editing with CRISPR-Cas9-directed base excision repair proteins[J]. Nature communications, 2021, 12(1): 1384.
[16] Sun N, Zhao D, Li S, et al. Reconstructed glycosylase base editors GBE2. 0 with enhanced C-to-G base editing efficiency and purity[J]. Molecular Therapy, 2022, 30(7): 2452-2463.