国电联合动力技术有限公司,北京,100010;
摘要:风光氢储融一体化技术是解决可再生能源大规模消纳、实现深度脱碳的关键路径。人工智能(AI)作为核心赋能技术,正深刻变革该系统的规划、运行与管理模式。本文系统综述了AI在风光功率预测、电解制氢优化、多能协调控制、系统优化配置及金融风险建模中的创新应用。研究表明,基于深度学习的预测模型显著提升了风光出力与负荷预测精度;强化学习、智能优化算法在多时间尺度能量管理、容量规划中展现出强大寻优能力;联邦学习等隐私计算技术助力打破数据壁垒;AI驱动的金融模型则有效量化风险、优化投资决策。通过典型应用案例分析,本文验证了AI在提升系统效率、经济性与可靠性方面的显著效果,并探讨了数据质量、模型可解释性、安全隐私等挑战与未来研究方向。AI深度融入风光氢储融系统,将加速构建高比例可再生能源支撑的智能、韧性与可持续能源未来。
关键词:人工智能;风光氢储融一体化;可再生能源;氢能;储能;能源金融;系统优化;预测控制
参考文献
[1]Zhang, Y., et al. (2023). A hybrid CNN-LSTM model for ultra-short-term photovoltaic power forecasting with spatial-temporal feature extraction. Applied Energy, 332, 120536.
[2]Wang, L., et al. (2024). Deep reinforcement learning for real-time energy management of integrated renewable hydrogen systems considering electrolyzer degradation. IEEE Transactions on Sustainable Energy, 15(1), 456-468.
[3]Li, H., & Liu, P. (2022). Optimal capacity planning of wind-solar-hydrogen-storage integrated energy systems: A two-stage stochastic programming approach with copula-based scenario generation. Renewable and Sustainable Energy Reviews, 168, 112789.
[4]Chen, X., et al. (2023). Federated learning for collaborative hydrogen demand forecasting across multiple refueling stations with privacy preservation. Energy and AI, 14, 100276.
[5]International Energy Agency (IEA). (2023). The Future of Hydrogen: Seizing today's opportunities. OECD/IEA.