重庆对外经贸学院,重庆,401520;
摘要:本文提出一种基于稀疏贝叶斯学习的光场深度恢复方法,针对遮挡场景中传统方法存在的边界模糊和伪影问题,通过建立层次化概率模型将遮挡问题转化为稀疏信号恢复任务。该方法利用自适应稀疏约束学习和贝叶斯推断机制,自动识别并滤除遮挡噪声,同时保持有效深度信息,在复杂遮挡场景下实现了深度估计误差降低,展现出优异的边缘保持能力和鲁棒性,为光场相机的三维感知及虚拟现实、自动驾驶等应用提供了新的技术解决方案。
关键词:稀疏贝叶斯学习;遮挡场景;深度恢复;光场成像
参考文献
[1]MaiYiWei,“Reducing plenoptic camera artifacts,”Computer Graphics Forum,vol.29,no.6,pp.1955–1968, 2010.
[2]T.E.Bishop and P.Favaro,“The light field camera:Extended depth of field,aliasing, and superresolution.”IEEE Trans.Pattern Anal.Mach.Intell.(PAMI),vol.34,no.5,pp.972–986,2012.
[3]C.Perwass and P.Wietzke,“Single lens 3d-camera with extended depthof-field,”in SPIE Elect.Imaging,2012.
[4]H.Lin,C.Chen,S.B.Kang,and J.Yu,“Depth recovery from light field using focal stack symmetry.” in Proceedings of the IEEE International Conference on Computer Vision(ICCV),2015.
[5]M. W.Tao,S.Hadap,J.Malik,and R.Ramamoorthi,“Depth from combining defocus and correspondence using light-field cameras[C],”in Proc.IEEE Int.Conf.Comput.Vis.,2013,pp.673–680.
[6]Yang D G,Xiao Z L,Yang H,et al.Depth estimation from light field analysis based multiple cues fusion[J]. Chinese Journal of Computers, 2015,38(12):2437-2449.
[7]S.Wanner and B.Goldluecke,“Globally consistent depth labelingof 4D light fields[C],”in Proc.IEEE Conf.Comput.Vis.Pattern Recog.,2012,pp.41–48.
[8]H.Lin,C.Chen,S.B.Kang,and J.Yu,“Depth recovery from light field using focal stack symmetry.”in Proceedings of the IEEE International Conference on Computer Vision (ICCV),2015.