欢迎访问新加坡聚知刊出版有限公司官方网站
65 84368249info@juzhikan.asia
Vitamin B production by intestinal flora through the cerebral-intestinal axis in the face of neuritis obliterans
  • ISSN:3041-0843(Online) 3041-0797(Print)
  • DOI:10.69979/3041-0843.25.01.031
  • 出版频率:季刊
  • 语言:英文
  • 收录数据库:ISSN:https://portal.issn.org/ 中国知网:https://scholar.cnki.net/journal/search

Vitamin B production by intestinal flora through the cerebral-intestinal axis in the face of neuritis obliterans
Peng Xuan    Wen Huiyi    Fu Siwu

Northwest University for NationalitiesLanzhouGansu730030

Abstract: Facial neuritis, a neurological disease, is characterized by dysfunction of the muscles responsible for facial expression. The pathogenesis of this condition involves a variety of factors, including an inflammatory response, nerve ischemia, and metabolic dysregulation.Recent studies have demonstrated that intestinal flora influence the function of both the central and peripheral nervous systems through bidirectional regulatory mechanisms of the brain-gut axis. This review will focus on the potential role of vitamin B synthesized by intestinal flora (e.g., B1, B6, B12, etc.) in facial neuritis. Vitamin B serves as an important coenzyme involved in the formation of nerve myelin and energy metabolism. Moreover, clinical studies have identified that patients with facial neuritis frequently exhibit signs of intestinal dysbiosis and diminished vitamin B levels. This observation suggests the potential for the flora-vitamin B axis to play a pivotal role in the onset and progression of the disease. This research domain offers novel insights into the prevention and treatment of facial neuritis, underscoring the necessity for further in-depth studies. These studies should investigate the specific mechanisms through which particular strains of vitamin B-producing bacteria influence facial neuritis via the brain-gut axis. Moreover, they should aim to develop suitable intervention programs.

Keywords: vitamin B; facial neuritis; intestinal flora; brain-gut axis; potential role

[1]Jaiswal AS, Sikka K, Bhalla AS, Manchanda S, Goel G, Verma H, et al. Facial neuritis in coronavirus disease 2019 associated mucormycosis: study on clinico-radiological correlates. J Laryngol Otol. 2022;136(4):349-53.

[2]Zhang W, Xu L, Luo T, Wu F, Zhao B, Li X. The etiology of Bell's palsy: a review. J Neurol. 2020;267(7):1896-905.

[3]Greco A, Gallo A, Fusconi M, Marinelli C, Macri GF, de Vincentiis M. Bell's palsy and autoimmunity. Autoimmun Rev. 2012;12(2):323-8.

[4]Yilmaz M, Tarakcioglu M, Bayazit N, Bayazit YA, Namiduru M, Kanlikama M. Serum cytokine levels in Bell's palsy. J Neurol Sci. 2002;197(1-2):69-72.

[5]Gorodezky C, Carranza JM, Bustamante A, Yescas P, Martinez A, Alonso Vilatela ME. The HLA system and T-cell subsets in Bell's palsy. Acta Otolaryngol. 1991;111(6):1070-4.

[6]Aviel A, Ostfeld E, Burstein R, Marshak G, Bentwich Z. Peripheral blood T and B lymphocyte subpopulations in Bell's palsy. Ann Otol Rhinol Laryngol. 1983;92(2 Pt 1):187-91.

[7]Atan D, İkincioğulları A, Köseoğlu S, Özcan KM, Çetin MA, Ensari S, et al. New Predictive Parameters of Bell's Palsy: Neutrophil to Lymphocyte Ratio and Platelet to Lymphocyte Ratio. Balkan Med J. 2015;32(2):167-70.

[8]Singh A, Deshmukh P. Bell's Palsy: A Review. Cureus. 2022;14(10):e30186.

[9]Eviston TJ, Croxson GR, Kennedy PG, Hadlock T, Krishnan AV. Bell's palsy: aetiology, clinical features and multidisciplinary care. J Neurol Neurosurg Psychiatry. 2015;86(12):1356-61.

[10]Gronseth GS, Paduga R. Evidence-based guideline update: steroids and antivirals for Bell palsy: report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology. 2012;79(22):2209-13.

[11]Monsanto RD, Bittencourt AG, Bobato Neto NJ, Beilke SC, Lorenzetti FT, Salomone R. Treatment and Prognosis of Facial Palsy on Ramsay Hunt Syndrome: Results Based on a Review of the Literature. Int Arch Otorhinolaryngol. 2016;20(4):394-400.

[12]XU Cheng'e, WU Guangli, DANG Xinyun. Efficacy of murine nerve growth factor combined with acupuncture in the treatment of pediatric facial neuritis and its effect on IL-17, IL-6 and IL-21. Journal of Modern Integrative Chinese and Western Medicine. 2018;27(15):1676-8.

[13]Allende JB, Caviedes R, von Marttens A, Kuga M, Fernández E. A case series of low-level laser therapy treatment in patients with peripheral facial palsy. Photodiagnosis and Photodynamic Therapy. 2024;49:104314.

[14]Onk D, Mammadov R, SuleyMan B, Cimen FK, Cankaya M, Gul V, et al. The effect of thiamine and its metabolites on peripheral neuropathic pain induced by cisplatin in rats. Experimental animals. 2018;67(2):259-69.

[15]Muhamad R, Akrivaki A, Papagiannopoulou G, Zavridis P, Zis P. The role of vitamin B6 in peripheral neuropathy: a systematic review. Nutrients. 2023;15(13):2823.

[16]Lauer AA, Grimm HS, Apel B, Golobrodska N, Kruse L, Ratanski E, et al. Mechanistic link between vitamin B12 and Alzheimer’s disease. Biomolecules. 2022;12(1):129.

[17]mechanism in Alzheimer's disease. Alzheimer's & Dementia: Translational Research & Clinical Interventions. 2018;4:575-90.

[18]Chen Y-S, Lee H-F, Tsai C-H, Hsu Y-Y, Fang C-J, Chen C-J, et al. Effect of Vitamin B2 supplementation on migraine prophylaxis: A systematic review and meta-analysis. Nutritional neuroscience. 2022;25(9):1801-12.

[19]Nattagh-Eshtivani E, Sani MA, Dahri M, Ghalichi F, Ghavami A, Arjang P, et al. The role of nutrients in the pathogenesis and treatment of migraine headaches. Biomedicine & Pharmacotherapy. 2018;102:317-25.

[20]Jeon Y-M, Kwon Y, Lee S, Kim S, Jo M, Lee S, et al. Vitamin B12 reduces TDP-43 toxicity by alleviating oxidative stress and mitochondrial dysfunction. Antioxidants. 2022;11(1):82.

[21]Park J, Hosomi K, Kawashima H, Chen YA, Mohsen A, Ohno H, et al. Dietary Vitamin B1 Intake Influences Gut Microbial Community and the Consequent Production of Short-Chain Fatty Acids. Nutrients. 2022;14(10).

[22]Chang Y, Zhang Z, Cai J, Wang C, Liu D, Liu Z, et al. Coevolution of specific gut microbiota of Min pig with host cold adaptation through enhanced vitamin B1 synthesis. Front Microbiol. 2024;15:1448090.

[23]Yoshii K, Hosomi K, Sawane K, Kunisawa J. Metabolism of Dietary and Microbial Vitamin B Family in the Regulation of Host Immunity. Front Nutr. 2019;6:48.

[24]Magnúsdóttir S, Ravcheev D, de Crécy-Lagard V, Thiele I. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front Genet. 2015;6:148.

[25]Khromova NY, Epishkina JM, Karetkin BA, Khabibulina NV, Beloded AV, Shakir IV, et al. The Combination of In Vitro Assessment of Stress Tolerance Ability, Autoaggregation, and Vitamin B-Producing Ability for New Probiotic Strain Introduction. Microorganisms. 2022;10(2).

[26]Hossain KS, Amarasena S, Mayengbam S. B Vitamins and Their Roles in Gut Health. Microorganisms. 2022;10(6).

[27]Sobczyńska-Malefora A, Delvin E, McCaddon A, Ahmadi KR, Harrington DJ. Vitamin B(12) status in health and disease: a critical review. Diagnosis of deficiency and insufficiency - clinical and laboratory pitfalls. Crit Rev Clin Lab Sci. 2021;58(6):399-429.

[28]Nezami BG, Srinivasan S. Enteric nervous system in the small intestine: pathophysiology and clinical implications. Curr Gastroenterol Rep. 2010;12(5):358-65.

[29]Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015;28(2):203-9.

[30]Osadchiy V, Martin CR, Mayer EA. The Gut-Brain Axis and the Microbiome: Mechanisms and Clinical Implications. Clin Gastroenterol Hepatol. 2019;17(2):322-32.

[31]Hibberd T, Spencer NJ, Brookes S, Costa M, Yew WP. Enteric Control of the Sympathetic Nervous System. Adv Exp Med Biol. 2022;1383:89-103.